
TASK: PA 12
CDRL: M002R1

24April 1995

Domain Architecture Handbook and
Testbed
Lessons Learned

STARS-AC-M002R1/001/00

19950522 109
DUO QUALITY INSPECTED 1

^ ■•■-

TASK: PA12
CDRL: M002R1

24 April 1995

INFORMAL TECHNICAL REPORT

For
SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS

(STARS)

Domain Architecture Handbook and Testbed
Lessons Learned

STARS-AC-M002R1/001/00
24 April 1995

Accesion For

CONTRACT NO. F19628-93-C-0130

Prepared for:
Electronic Systems Center

Air Force Systems Command, USAF
Hanscom, AFB, MA 01731-2816

Prepared by:
Unisys Corporation

12010 Sunrise Valley Drive
Reston, VA 22091

NTIS CRA&I
DTIC TAB
Unannounced
Justification

D

By
Distribution /

Availability Codes

Dist

At

Avail and/or
Special

Distribution Statement "A"
per DoD Directive 5230.24

Authorized for public release; Distribution is unlimited

TASK: PA12
CDRL: M002R1

24 April 1995

Data Reference: STARS-AC-M002R1/001/00
INFORMAL TECHNICAL REPORT
Domain Architecture Handbook and Testbed
Lessons Learned

Distribution Statement "A"
per DoD Directive 5230.24

Authorized for public release; Distribution is unlimited

Copyright 1995, Unisys Corporation, Reston, Virginia
Copyright is assigned to the U.S. Government upon delivery thereto, in accordance

with the DFAR Special Works Clause.

This document, developed under the Software Technology for Adaptable, Reliable Systems
(STARS) program, is approved for release under Distribution "A" of the Scientific and Technical
Information Program Classification Scheme (DoD Directive 5230.24) unless otherwise indicated.
Sponsored by the U.S. Advanced Research Projects Agency (ARPA) under contract F19628-93-
C-0130, the STARS program is supported by the military services, SEI, and MITRE, with he U.S.
Air Force as the executive contracting agent. The information identified herein is subject to
change. For further information, contact the authors at the following mailer address:

delivery@stars.reston.unisysgsg.com.

Permission to use, copy, modify, and comment on this document for purposes stated under Distri-
bution "A" and without fee is hereby granted, provided that this notice appears in each whole or
partial copy.This document retains Contractor indemnification to The Government regarding
copyrights pursuant to the above referenced STARS contract.The Government disclaims all re-
sponsibility against liability, including costs and expenses for violation of proprietary rights, or
copyrights arising out of the creation or use of this document.

The contents of this document constitute technical information developed for internal Government
use. The Government does not guarantee the accuracy of the contents and does not sponsor the re-
lease to third parties whether engaged in performance of a Government contract or subcontract or
otherwise. The Government further disallows any liability for damages incurred as the result of the
dissemination of this information.

In addition, the Government (prime contractor or its subcontractor) disclaims all warranties with
regard to this document, including all implied warranties of merchantability and fitness, and in no
event shall the Government (prim contractor or its subcontractor) be liable for any special, indirect
or consequential damages or any damages whatsoever resulting from the loss of use, data, or prof-
its, whether in action of contract, negligence or other tortious action, arising in connection with the
use of this document.

TASK: PA12
CDRL: M002R1

24 April 1995

Data Reference: STARS-AC-M002R1/001/00
INFORMAL TECHNICAL REPORT
Domain Architecture Handbook and Testbed
Lessons Learned

Abstract

This document describes the lessons learned from STARS task PA 12. Under this task, the Unisys
STARS team developed a testbed for analyzing architecture description languages (ADLs) and a
World Wide Web "Software Architecture Technology Guide" to provide the DoD software engi-
neering community with a broad range of information about software architecture technology.
The lessons learned focus on issues associated with:

• Developing World Wide Web documents in general and the Software Architecture Tech-
nology Guide in particular.

• Establishing criteria for analyzing ADLs and developing scenarios for applying the cri-
teria.

• Obtaining ADL technologies for analysis and analyzing them using the criteria and sce-
narios.

TASK: PA12
CDRL: M002R1

24 April 1995

Data Reference: STARS-AC-M002R1/001/00
INFORMAL TECHNICAL REPORT
Domain Architecture Handbook and Testbed
Lessons Learned

Principal Author(s):

ZY/jpe. %T
Frank Sxßboda * Date

Dick Creps Date

Paul Kogui Date

Approvals:

1; 4. PUMJM ¥/r) /1t/
Program Manager Teri F. Payton Date

(Signatures on File)

REPORT DOCUMENTION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of Information is estimated to average 1 hour per response, including the time for reviewing Instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of Information,
Including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Protect (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

24 April 1995
3. REPORT TYPE AND DATES COVERED

Informal Technical
4. TITLE AND SUBTITLE

Domain Architecture Handbook and Testbed
Lessons Learned

6. AUTHOR(S)

Frank Svoboda, Dick Creps, Paul Kogut

5. FUNDING NUMBERS

F19628-93-C-0130

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Unisys Corporation
12010 Sunrise Valley Drive
Reston,VA 22091-3499

8. PERFORMING ORGANIZATION
REPORT NUMBER

CDRLNBR
STARS- AC-M002R1 /001/00

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Department of the Air Force
ESC/ENS
HanscomAFB, MA 01731-2816

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

M002

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Distribution "A"

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This document describes the lessons learned from STARS task PA 12. Under this task, the Unisys
STARS team developed a testbed for analyzing architecture description languages (ADLs) and a
World Wide Web "Software Architecture Technology Guide" to provide the DoD software engineer-
ing community with a broad range of information about software architecture technology. The lessons
learned focus on issues associated with:

• Developing World Wide Web documents in general and the Software Architecture Technol-
ogy Guide in particular.

• Establishing criteria for analyzing ADLs and developing scenarios for applying the criteria.
• Obtaining ADL technologies for analysis and analyzing them using the criteria and scenar-

ios.

14. SUBJECT TERMS 15. NUMBER OF PAGES

16
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

SAR

TASK: PA12
CDRL: M002R1

24 April 1995

Data Reference: STARS-AC-M002R1/001/00
INFORMAL TECHNICAL REPORT
Domain Architecture Handbook and Testbed
Lessons Learned

Table of Contents

Foreword V1

1.0 Introduction 1

2.0 Task Overview 2
2.1 ADL Analysis Scenarios 2
2.2 ADL Testbed Environment 2
2.3 Software Architecture Technology Guide 2

3.0 Implementation — ADL Analysis Scenarios 3
3.1 Approach 3
3.2 Work-Products 4
3.3 Issues and Lessons Learned 5
3.4 Conclusions 6

4.0 Implementation — ADL Testbed Environment 6
4.1 Approach 6
4.2 Work-Products 7
4.3 Issues and Lessons Learned 7
4.4 Conclusions 7

5.0 Implementation — Software Architecture Technology Guide 8
5.1 Approach 8
5.2 Tech support and tools 8
5.3 Work-Products 9
5.4 Issues and Lessons Learned 9
5.5 Conclusions 11

6.0 Overall Conclusions 12

Acronyms 13

References 15

24 April 1995 STARS-AC-M002R1/001/00

Foreword

The organization of this document reflects the structure of task PA 12. The Introduction (Section
1) gives the motivation for the overall task. The Task Overview (Section 2) introduces the major
objectives of the task and the three subtasks that were performed to achieve these objectives.
Each of the subtasks is addressed in more detail in Sections 3, 4, and 5, with a description of the
individual approaches, implementation issues, tool use, and conclusions, as appropriate. The
overall conclusions for the task are given in Section 6. The document concludes with a list of rel-
evant acronyms and a list of bibliographic references.

The audience for the products of the work described herein is defined as the DoD Software
development community. Although the testbed results are of particular interest to persons with
an acknowledged interest in software/system architectures and their representation, the introduc-
tory sections of the World-Wide Web-based Software Architecture Technology Guide may be
used even by those with no current, perceived need. It is our intention to provide resources that
will assist organizations in making informed decisions about software architecture representa-
tion technology.

VI

24 April 1995 STARS-AC-M002R1/001/00

1. Introduction

Architecture-based reuse is one of the major themes of STARS [STARS93] and of the DoD Soft-
ware Reuse Initiative Vision and Strategy[DoD92]. Domain architectures are presented as the
key technical foundation for systematic reuse. Yet architecture representation to support reuse
remains among the most difficult technical issue to overcome. Several ARPA and Software
Reuse Initiative programs have begun to address architecture representation issues, but more
work is needed, and some means is needed for sharing, assessing, and comparing the results of
these programs and other relevant DoD efforts.

The STARS demonstration projects are each using distinct techniques for representing and
applying domain architectures, reflecting interpretations of the STARS concept of megaprogram-
ming. For example, the domain engineering effort underway on the Army STARS demo project
in the ELPA domain is producing an initial means for representing a domain architecture
through application of the ODM and GenVoca methods for domain modeling and architecture
definition, respectively.

CARDS has applied an architecture representation approach as a basis for their Command Cen-
ter Library and their prototype system composition capability. CARDS also conducted an
architecture workshop in November 1993 and has developed an architecture tutorial which has
been presented in several forums. Other DoD efforts, such as the SEI model-based software engi-
neering project and the ARPA DSSA, Prototech, and Software Composition programs, are also
exploring architecture representation issues and are developing specific techniques (e.g., OCA,
LILEANNA, Micro-Rapide, UniCon). In addition, tools and techniques have been produced by
other government agencies (e.g., the NASA-sponsored KAPTUR tool - now being commercial-
ized by CTA as "Capture") and have begun to appear in the commercial marketplace (e.g.,
TRW's UNAS/SALE products, derived from work originally funded by the Air Force).

These assorted capabilities vary widely in terms of their level of current practicability, their
applicability to different classes of problems, and so on. For example, UNAS/SALE, KAPTUR,
and some of the SEI and CARDS techniques have already been applied in practice, while the
ARPA DSSA and Prototech programs are for the most part taking more formal, language-based
approaches that will bear fruit in the longer term.

The DoD SW development community needs access to resources that can provide assistance in
understanding architecture issues and choosing appropriate architecture representations. A hand-
book-style document is needed (preferably in an on-line, easy-to-digest format, such as World-
Wide Web hypermedia) that gives the DoD community an overview of the conceptual underpin-
nings of domain-specific architectures and provides a reference for understanding the techniques
that have been or are being developed and how they can be applied. In conjunction with the
development of such a document, a testbed is needed to objectively assess the extent to which
these techniques are ready to be applied in practice and the kinds of problems to which they are
most applicable. Such a testbed can also assist in identifying broad deficiencies in available tech-
niques and establishing future research priorities.

24April 1995 STARS-AC-M002R1/001/00

2. Task Overview

This task had as its three primary objectives the development of:

1. A set of scenarios for analyzing ADL properties, based on criteria established in the ADL
descriptive model framework (a taxonomy of ADL features) being developed by the SEI
and CARDS. The scenarios, and the results from applying them, are intended to help the
DoD software development community understand, assess, and select appropriate archi-
tecture representation techniques.

2. A testbed environment, populated with ADL support tools, in which the scenarios can be
applied to analyze specific ADLs.

3. A web-based Software Architecture Technology Guide — an on-line resource for under-
standing architecture technology issues; among other things, it is designed to include the
results of specific ADL analyses conducted under this task.

For a more detailed treatment of the scenarios developed for the testbed and the results of apply-
ing them to specific ADLs, please consult the other report produced under this task, Scenarios
for Analyzing Architecture Description Languages [STARS95]. To explore the Software Archi-
tecture Technology Guide, see the following URL:

http://www.stars.reston.unisysgsg.com/arch/guide.html

2.1. ADL Analysis Scenarios

An initial set of scenarios for analyzing ADL properties has been developed. Each scenario is
designed to reveal the presence or absence of specific ADL features defined in the SEI/CARDS
feature model. The scenarios involve activities addressing both architecture creation (e.g., by a
domain engineer defining a domain architecture) and architecture utilization (e.g., by an applica-
tion engineer instantiating a domain architecture for use in a specific system). The scenarios
emphasize empirical analysis through operational usage of the notations and tools, rather than
through static application of a list of criteria.

2.2. ADL Testbed Environment

To enable analysis of a specific set of ADLs and supporting tools, an initial ADL testbed envi-
ronment has been hosted on a Sun workstation at the STARS Technology Center. This testbed
has been populated with a set of ADL support tools that were the candidates for hands-on analy-
sis. Of these candidates, two ADLs/tools were analyzed using the scenarios in conjunction with
the SEI/CARDS feature model and the results were documented.

2.3. Software Architecture Technology Guide

A World-Wide Web (WWW)-based Software Architecture Technology Guide (hereafter often

24 April 1995 STARS-AC-M002R1/001/00

referred to as the Guide or the "web node") has been developed that provides an introduction to
software architecture concepts and terminology and includes summaries and analyses of a repre-
sentative sampling of ADLs addressing both the state-of-the-practice and the state-of-the-art. It
includes the ADL analysis scenarios and the results from applying them to specific ADLs.

The Guide is packaged in a "self-guided tour" format, enabling the user to easily navigate
among the major topics it addresses. The Guide itself offers a significant amount of information
about these topics, but it also provides links to numerous external on-line resources such as DoD
architecture-focused program home pages and architecture-related reference materials. As a
result, the Guide offers the DoD software engineering community a unique mixture of a broad
range of architecture-related information, packaged to support easy on-line browsing and
downloading.

3. Implementation — ADL Analysis Scenarios

3.1. Approach

Our overall scenario development approach was inspired by the software engineering environ-
ment evaluation methodology developed by Weiderman, et al, at the SEI [Weid86] and
subsequently applied and refined by Feiler and Smeaton [Feil88], Christie [Chri94], and others.
Rombach's process representation assessment framework [Romb91] also influenced our
approach. The Weiderman methodology is founded on several key principles, including the
following:

• Evaluations should be based on the results of well-defined experiments to maximize
their objectivity and repeatability.

• Evaluation methods should clearly define the scope of the functionality to be evaluated
and should focus on core functionality that will be broadly relevant to the evaluated
technologies and of greatest interest to the evaluators.

• Methods should be based on general user activities rather than detailed tool operations.

• Methods should be as independent of the technologies to be evaluated as possible to .
minimize potential biases.

• Methods should be extensible to accommodate additional user activities and experi-
ments.

Our testbed development approach involved four major activities reflecting these guiding princi-
ples. These activities were:

1. Establish criteria to use as a basis for assessing key ADL properties.

In this activity we leveraged the ADL feature analysis work being performed jointly by
the SEI and CARDS [Clem95, KC95]. In this work, a simplified ODM domain analysis

24 April 1995 STARS-AC-M002R1/001/00

was performed on the ADL domain. The analysis has yielded a descriptive model frame-
work (or "feature model") which defines a taxonomy of properties ("features") that ADLs
can possess. Some of these features are amenable to static analyses that needn't involve
scenario-based hands-on experiments to yield reasonably objective results. We thus prior-
itized the features in terms of (a) how difficult they are to analyze statically and objec-
tively and (b) how practically relevant they are to ADLs currently available for analysis.
Examples of the ADL features we elected to emphasize are:

Support for various architecture styles

Ability to represent architectures of various categories of systems (e.g., real-time, dis-
tributed)

Understandability of architectures described using the ADL

Modifiability of architectures described using the ADL

Support for variability within an architecture description (e.g., within component
interfaces) to facilitate reuse

Scalability to support large-scale architectures or components

2. Develop scenario-based methods for objectively applying the criteria to ADLs to deter-
mine their properties.

Our approach emphasizes analysis through scenario-based operational usage of the ADLs
and supporting tools relative to the selected criteria, supplemented by static analysis of the
ADLs relative to other features in the SEI/CARDS feature model that are more amenable
to such analyses. Included with the feature model is a detailed form for recording the
results of an ADL analysis, feature by feature. We adopted this form as the medium for
recording the results of our analyses.

Our scenarios are founded on a set of "model problems" for architecture definition
(inspired by Shaw's work in this area [Shaw94a]) that concisely pose interesting and rele-
vant challenges to ADLs. The problems have been defined to exercise the range of ADL
features from which the assessment criteria are derived. Specifically, we have defined two
scenarios based on model problems in the automobile cruise control and military com-
mand center domains. Selection of the cruise control domain was inspired by Shaw's com-
parative analysis of cruise control architectures [Shaw94b], while selection of the
command center domain was influenced primarily by the PRISM and CARDS work that
has been done in this area.

3.2. Work-Products

The work-products for this effort are the ADL analysis scenarios and the corresponding evalua-
tion information. The scenarios focus on two model problems in two domains/architectural
contexts. Each scenario potentially provides a counterpoint against biases introduced by the

24 April 1995 STARS-AC-M002R1/001/00

other.

1. Cruise Control Scenario — problem area is well-known, with many existing solution
architectures, in several different styles; This scenario may have more appeal to the
researcher, given its manageable level of complexity.

2. Command and Control (C2) Scenario — this scenario addresses a problem area that may
be of more interest to practitioners. Actual experience on the Air Force CARDS and
PRISM programs in this application area was utilized in the development of the C2 sce-
nario.

As noted above, the details of the scenarios can be obtained in the other PA 12 technical report,
Scenarios for Analyzing Architecture Description Languages.

3.3. Issues and Lessons Learned

• Architecture style proved an effective feature-of-focus.

Architecture style was chosen as the key feature-of-focus for making decisions about the
nature of the model problems. It was determined to be the feature most likely to introduce the
most representational bias into a scenario, so it was important to emphasize that feature in
order to better manage and predict the bias. One way to mitigate the bias was to design the
scenarios to address a wide range of styles. In executing the scenarios, we found that the topo-
logical notion of "shape" of architectural connection models was an excellent starting point
for understanding the basic concepts of architecture styles.

• Evaluation criteria are subject to interpretation and subjectivity

In certain cases, the assessment of an ADL with respect to given attributes was subject to
interpretation and potential misunderstanding. In one case, the terms "Cross-reference" and
"translation" suffered from perceived ambiguity among team members. Multiple-choice
responses were particularly prone to variation. Although consensus was easily achieved by
our small team, it may be more elusive for a larger sample of the population (see next two
items).

• Scenario language should reflect the variability in the ADL domain and not introduce
undue biases.

As an example, the use of the word "statement" has little meaning in the context of the evalu-
ation of a graphical ADL. The term "construct" was adopted in its place.

• Assumptions should be explicitly identified.

Analysis questions based on assumed semantic evaluation capabilities are not applicable to
ADLs without those capabilities. For example, tolerance of incomplete models exists both in
those ADLs with built-in tolerance and those incapable of determining completeness.

• Hands-on experience in evaluating architecture representations using the scenarios has

24 April 1995 STARS-AC-M002R1/001/00

has yielded valuable feedback for improving them.

We learned a lot about the inadequacies of the informal architecture description in the scenar-
ios by trying to model it with the ADL (especially UniCon). The descriptions should be
refined based on this experience. Doing the evaluation helped immensely in clarifying the
ADL descriptive model features but there are still many areas especially in the area of tools
which need additional development and clarification. This can only be done the hard way —
by hands-on evaluation of more ADLs.

3.4. Conclusions

We believe that our selection of model problems and ADLs have led to scenarios that yield com-
parable results across ADLs, problems, and architectural styles. Scenarios can be completed
with a minimum of creative activity and the time and effort for completion is relatively predict-
able. Working through the scenarios have the additional benefit of forcing the evaluator into a
disciplined analysis of his own architecture description requirements.

4. Implementation — ADL Testbed Environment

4.1. Approach

Our approach to developing and exercising the testbed environment involved the following two
major activities:

1. Select a representative set of ADLs and supporting tools to analyze, and obtain and install
the tools to support the hands-on, scenario-based analyses.

We analyzed two ADLs during the course of our task. This number was limited primarily
by resource constraints on the task. We planned to select ADLs that covered a range of
practical and research interests. To a certain extent, we have achieved this goal with the
analysis of CMU's UniCon (a research prototype) and CTA's soon-to-be commercial
offering Capture.

The installed tool base, in conjunction with the scenario-based analysis methods and
underlying ADL feature model, together constitutes the ADL analysis testbed.

2. Apply the methods and criteria to the selected ADLs/tools and document the results.

We analyzed the selected ADLs both statically (for those criteria that are amenable to such
analysis) and more dynamically through application of the scenarios. The scenarios are
designed to yield results that are objective, repeatable, and comparable, and we enacted
them to preserve these design principles as much as possible. During scenario enactment,
we recorded results about the ADL features in the form supplied with the SEI/CARDS
feature model. We also recorded notes and rationale about the ADLs and workproducts
during scenario enactment and noted issues and lessons learned that may help improve the

24 April 1995 STARS-AC-M002R1/001/00

methods in the future.

The SEI and CARDS have already performed static analyses of a small set of ADLs to
help validate the feature model. For further validation, they have also asked a number of
ADL designers and users to characterize their ADLs in terms of the feature model. We
collected and interpreted some of these findings in performing our own static analyses.

4.2. Work-Products

The work-products for this effort are the installed tool base portion of the testbed and the results
of the ADL analyses. The tool base includes the executables and architecture models for both
Capture and UniCon. The UniCon kit also includes the Odin enhanced "make" utility, which
was required for its installation.

The detailed results of the ADL analyses are published in the other PA 12 technical report and in
the Software Architecture Technology Guide.

4.3. Issues and Lessons Learned

• Dependencies upon commercial products prevented the acquisition of certain ADL
products.

Our choice of ADLs was dependent on the availability of supporting tools. Prerequisites for
tool acquisition included no- or low-cost licensing and availability within the task completion
time-frame. Several tools required commercial languages with accompanying GUI products
such as Lisp or SmallTalk that priced them beyond our ability to obtain them. It should be
noted that the absence of GUI components did not always preclude the use of textual tools
such as parsers and editors.

• The task's tight schedule limited tool acquisition.

The task's short duration made us especially susceptible to time-dependent requests for tools
and supporting documents. The time deficit was compounded by holiday and end-of-year
activities for both military and academic organizations, although we initiated solicitations
early. We found that personal contact (either face-to-face or by phone) was most effective for
support material acquisition. E-mail proved useful for confirmation of verbal communications
and for providing a document trail for recording activities and progress. Not surprisingly ,
there also appears to be a strong correlation between stake in the use of tools/outcome of
effort and supplier responsiveness.

The lessons learned from applying the scenarios are incorporated into the lessons under the sce-
nario development task above, since those lessons directly relate to the quality and usability of
the scenarios.

4.4. Conclusions

Our tool base was adequate for executing the evaluation scenarios on an adequately representa-

24 April 1995 STARS-AC-M002R1/001/00

tive sample of ADLs and for providing feedback which was then used to perform interim
scenario improvements. Although we would have preferred to have had more potential selec-
tions of ADL tools, the attendant learning curve for additional tools would have forced us
eliminate all but several candidates. The results of our tool acquisition were a good fit to our
time and manpower resources.

5. Implementation — Software Architecture Technology Guide

5.1. Approach

The Software Architecture Technology Guide was built under the following guidelines:

• The Guide will provide information on a representative set of ADLs that would be
candidates for evaluation/ study in the testbed.

• New, original material will be minimized, except to provide an overview for each
major topic and a structure for connecting the topics and accessing external material.
The Guide will establish hypermedia links to existing material from ADL suppliers to
provide easy access to information describing a cross-section of ADLs, ranging from
the state-of-the-practice to the state-of-the-art.

• Significant technical papers will be included, either locally or via remote hypermedia
links. These papers will be converted as necessary to either PostScript or HTML for-
mats.

5.2. Tech support and tools

The following tools were integral in developing the Software Architecture Technology Guide:

• Mosaic — public domain web browser; Mosaic supports standard HTML and in-line
graphic display in GIF format. Although our web work was performed using Mosaic,
the Netscape browser is currently gaining in popularity and supports extensions to
standard HTML, as well as the ability to display JPEG graphics formats.

• FrameMaker — Unix-based desktop publishing software by Frame Technology Cor-
poration

• Frame2html — converts FrameMaker documents to HTML format. Frame2html is
freeware available from Norwegian Telecom Research by anonymous ftp at

bang.nta.no:pub/fm2html.tar. v.O.n.m.Z

• xv — Unix-based graphic utility; displays GIF, TIFF, pbm, Sun rasterfile, X11 Bitmap,
PostScript, BMP, IRIS, JPEG, and PM bit-mapped (raster) formats, xv will also con-
vert a graphic between any of these given formats, xv also performs color modification
by changing RGB colors of any selected value to any other. Special effects include
blurring (effective for size reduction), embossing, edge detection, oil painting Simula-

24 April 1995 S TARS -AC-M002R1/001/00

tion, and image cropping.

• Screen Dump/Capture — various Unix utilities are available to capture graphic screen
images and ultimately convert these to GIF format for inclusion within a Mosaic-read-
able web node.

• gift — transparent GIF converter (i.e., makes the background color of a GIF graphic
transparent)

5.3. Work-Products

The work-products for this subtask are the text and graphics files which, when interpreted by a
suitable browser, display the Software Architecture Technology Guide. The form and content of
the Guide borrowed heavily from material in the CARDS Software Architecture tutorial (devel-
oped primarily by Kogut and Wallnau). STARS presentation materials were reused both for their
textual and graphic content.

The technical papers hosted locally with the Guide (and the format conversions required to
make them viewable) are also a result of this effort.

5.4. Issues and Lessons Learned

• Configuration Management (CM) becomes more important as a web node grows in size
and complexity.

As the count of the Guide's files grew (approximate count = 20), data management became
more important. Backups should be made regularly to protect against catastrophic loss. Ver-
sioning could even be considered to map the evolution of a web node's content.

• Standards for creation of web pages should be established, published, and reused.

Standards can establish a consistent "look and feel" for pages within a given web node and for
multiple nodes within an organization. Such standards can also assist in the training of web
presentation concepts.

• Presentation esthetics play a significant role in acceptance of web media.

A significant difference between hypermedia web nodes and their sequential text-based coun-
terparts (e.g., ftp, gopher sites) is the use of color and graphics. Even though the information
content of the guide was considered of primary importance, much of the comment we
received was on the presentation of the material. The full color and graphics capabilities of
web presentations can be used to capture the interest of viewers as well as to focus their atten-
tion on desired areas.

Our graphic banner (Figure 1) makes the analogy between software and classical architectures
and appears at the top of subsequent pages. The banner identifies the Guide and helps clarify
context in the navigation of multiple web nodes.

24 April 1995 STARS-AC-M002R1/001/00

Figure 1: Graphic Banner

The image-mapped graphic index (Figure 2) depicts the virtual organization of the node and
serves as its main navigation tool. The visual image of a blueprint helps reinforce the connec-
tion between more conventional notions of architecture and their analogs in software technol-

ogy-

\ Home Page
1 (you are here)

Architecture
& Reuse

Software
Engineering
Discipline

Concepts
References &

Suggested Reading

/ STARS_
Terminology CARDS

DSSA
SEI

/ Software
Architecture
Technology

Architecture-
Focused
Programs

Architecture
Description
Languages

Figure 2: Graphic Index

The graphics tools available to us were of limited capability (primarily Framemaker). Even
limited graphics tool can be enhanced with the use of clip art extracted from the web. We
employed web search engines such as Web Crawler and the World-Wide Web Worm to search
for additional graphics sources. Those anticipating extensive web work would be well-served
by more advanced graphics tools such as CorelDraw or Micrografix Designer and a substan-
tial clip-art library.

A consistent appearance (encompassing layout, choice of color, navigation, footnotes, etc.) is
desirable. Decisions regarding appearance extended beyond this task to other STARS web

24 April 1995 STARS-AC-M002R1/001/00

nodes. Although authors would like to plan how web pages are to be viewed, it is impossible
to dictate how much users will see in a given viewing (i.e., the size of individual pages). Dis-
plays and personal window selections will vary in size.

• Copyright issues exist for web usage of published materials.

There are varying constraints on the use of previously published materials in web nodes. Gov-
erning organizations, particularly the ACM and IEEE, have established (often conflicting)
standards for the use of documents published in their name. These standards are still evolving.
The URLs for access to the IEEE and ACM publishing policies are given below:

IEEE: http ://www.computer.org/publications.html

ACM: http://www.acm.org/

• Web resources for acquisition and distribution of materials should be identified on an
on-going basis.

Government sources are not centralized. Restricted access to related nodes (e.g., ARPA Proto-
tech, DSSA, and Software Foundations) hindered progress. Military web sites are particularly
resistant to web search engines. Web creators also need to identify links and distribution sites
for material upon release approval.

• Web node feedback is almost non-existent unless directly solicited.

The comments ("gripes") utility provided on our home page has not been utilized by the pub-
lic. This option allows readers to send e-mail comments to the authors of the web page. While
we have received significant feedback on the node, responses were the result of personal con-
tact with specific individuals.

• Conversion utilities vary in their effectiveness.

The conversion utilities available from web sources can perform the following text conver-
sions to HTML format adequately (though not well):

• Word Perfect -> RTF -> HTML is adequate.

• LaTex —> HTML is much better, due to hierarchical structure inherent in LaTex.

5.5. Conclusions

Continued use of web-based development opens up possibilities for the automation of that devel-
opment. Using text templates, decision models, and execution scripts for the purposes of
automated web node creation would be relatively inexpensive and quite useful if more WWW
work is probable. Given the burgeoning usage of the web, we might reconsider how we develop
presentations with an eye towards their reuse in web applications. Slides are typically developed
in landscape mode, whereas web documents are more suited to a portrait format. Graphics and
accompanying text often needed to be sized manually to fit the new format. We may want to
anticipate reuse of slides in the web and size accordingly. We also need to consider the differ-

11

24 April 1995 STARS-AC-M002R1/001/00

ences between presentation of web material to live audiences and individual viewing, especially
in the choice of print fonts and colors.

6. Overall Conclusions

The testbed will continue to yield valuable results to both the DoD software practitioner and
research communities by:

• Providing practical methods for analyzing ADLs so that practitioners and researchers
will have a concrete basis for conducting their own ADL analyses.

• Publishing the results of initial analyses of specific ADLs, which may be useful to
practitioners who need to make near-term decisions about architecture support tech-
nology.

• Providing a basis for comparing and identifying deficiencies in available technology to
help establish future research priorities.

• Establishing a baseline for future ADL analysis methods and criteria.

Additionally, this task is providing a useful new information resource to the DoD community in
the form of the Software Architecture Technology Guide. The Guide collects a wide range of
information about architecture technology and puts it at the fingertips of the Internet user to help
broaden awareness of this increasingly important topic. The Guide has already generated signifi-
cant interest among diverse software development communities (e.g., architecture, reuse,
reengineering) in academia, industry, and government.

The challenges we have faced in developing the testbed are, in their full generality, immense.
We believe that, despite the limited resources available to us in this task, we have established a
useful set of initial capabilities. We recognize, however, that more work will be needed to gener-
alize and extend our results.

12

24 April 1995 STARS-AC-M002R1/001/00

Acronyms

ADL Architecture Description Language

ARPA Advanced Research Projects Agency

BMP (Microsoft) BitMaP; a raster graphics imaging format

CARDS Comprehensive Approach to Reusable Defense Software

C2 shorthand for "Command and Control"

DoD Department of Defense

DSSA Domain-Specific Software Architectures; ARPA-funded project for the develop-
ment of architecture technology in fields of interest to the DoD

ELPA Emitter Location and Processing Analysis; an electronic warfare (EW) applica-
tion domain

ftp (Unix) file transfer protocol

GIF Graphic Interchange Format; a raster graphics imaging format — the only format
currently supported by the Mosaic browser

GUI Graphical User Interface

HTML Hypertext Markup Language; the hypertext language that forms the basis for the
World Wide Web

HTTP HyperText Transport Protocol

JPEG a compressed raster graphics imaging format

IRIS a raster graphics imaging format

KAPTUR Knowledge Acquisition for Preservation of Trade-offs and Underlying Rationale

OASD Office of the Assistant Secretary of Defense

ODM Organization Domain Modeling

PM a raster graphics imaging format

PRISM Portable, Reusable Integrated Software Modules

13

24 April 1995 STARS-AC-M002R1/001/00

RTF (Microsoft) Rieh Text Format; a textual format specification

SALE System Architect's Life-cycle Environment

SEI Software Engineering Institute

STARS Software Technology for Adaptable, Reliable Systems

TIFF Tagged Image File Format; a raster graphics imaging format

UNAS Universal Network Architecture System

WWW World-Wide Web (also "the web")

14

24 April 1995 STARS-AC-M002R1/001/00

References

[Booch86] Booch. "Object-Oriented Development," IEEE Transactions on Software Engineer-
ing, February 1986.

[Chri94] Christie. "A Practical Guide to the Technology and Adoption of Software Process
Automation," CMU/SEI-94-TR-007, Software Engineering Institute, Carnegie Mel-
lon University, Pittsburgh PA, March 1994.

[Clem95] Clements, Kogut. "Features of Architecture Description Languages," Proceedings of
the Seventh Annual Software Technology Conference, Salt Lake City UT, April 1995.

[Crep95] Richard Creps, Paul Kogut, Frank Svoboda. "A Testbed for Analyzing Architecture
Description Languages," Proceedings of the Seventh Annual Software Technology
Conference, Salt Lake City UT, April 1995.

[DoD92] DoD Software Reuse Vision and Strategy, Document #1222-04-210/40, July 1992.

[FeiI88] Feiler, Smeaton. "The Project Management Experiment," CMU/SEI-88-TR-7, Soft-
ware Engineering Institute, Carnegie Mellon University, Pittsburgh PA, July 1988.

[GS93] Garlan, Shaw. "An Introduction to Software Architecture," CMU/SEI-93-TR-33,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh PA, Decem-
ber 1993. Also in Advances in Software Engineering and Knowledge Engineering,
Volume I, Ambriola and Tortora (eds.), World Scientific Publishing, Singapore, 1993.

[KC95] Kogut, Clements. "Features of Architecture Description Languages," draft SEI tech-
nical report, Software Engineering Institute, Carnegie Mellon University, Pittsburgh
PA, December 1994.

[Romb91] Rombach. "A Framework for Assessing Process Representations," Proceedings of
the 6th International Software Process Workshop: Support for the Software Process,
Hakodate, Hokkaido, Japan, July 1991.

[Shaw94a] Shaw, Allen, Garlan, Klein, Ockerbloom, Scott, Schumacher. "Candidate Model
Problems in Software Architecture," unpublished manuscript, version 1.2, November
1994.

[Shaw94b] Shaw. "Making Choices: A Comparison of Style for Software Architecture," unpub-
lished manuscript, May 1994.

[SG88] Smith, Gerhart. "STATEMATE and Cruise Control: A Case Study," Proceedings of
COMPSAC88, 1988.

15

24 April 1995 STARS-AC-M002R1/001/00

[STARS93]Software Technology for Adaptable, Reliable Systems (STARS). "Conceptual Frame-
work for Reuse Processes (CFRP), Volume I: Definition, Version 3.0," STARS-VC-
A018/001/00, Unisys, October 1993.

[STARS95]Software Technology for Adaptable, Reliable Systems (STARS). "Scenarios for Ana-
lyzing Architecture Description Languages, Version 1.0," STARS-AC-MOOl/001/01,
Unisys, April 1995.

[Weid86] Weiderman, Habermann, Borger, Klein. "A Methodology for Evaluating Environ-
ments," Proceedings of the Second ACM SIGSOFT/SIGPLAN Symposium on Practi-
cal Software Development Environments, Palo Alto CA, December, 1986.

16

